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Systems of Functional-Differential Equations 

by 

G. Stephen Jones* 

A theorem asserting the existence of a fixed point under a 

mapping 

posite mapping fn  f o r  n suff ic ient ly  large, w e  shall suggestively 

describe as an asymptotic fixed point theorem. 

f by u t i l i z ing  information known about the nth power com- 

h shall denote the 

operation defined on the s e t  of subsets of a l i nea r  topological space 

which associates with each such subset i t s  closed convex h u 3 .  The 

following theorem is an example of a useful fixed point theorem of the 

asymptotic type which i s  an easy cansequence of Tychonoff's theorem [l]. 

Theorem 1. L e t  S be a closed convex subset of a complete 

local ly  convex l inea r  topological space X and l e t  f be a continuous 

mapping of S in to  X with f (S)  ( S. If ( fh)  (S) f o r  some posit ive k 

integer k is  contained i n  a compact set ,  then f has a fixed point i n  S. 

The difference between the above theorem and the usual Tychonoff 

theorem is, of course, t ha t  the image of S under f i s  not required 

t o  be contained i n  a compact set. Let us i l l u s t r a t e  the usefulness of 
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L 

t h i s  dis t inct ion by an investigation concerning the existence of  periodic 

solutions of d i f fe ren t ia l  equations with hereditary dependence. W e  begin 

by defining C(u) 

closed in te rva l  u in to  Rn (n-dimensional Euclidean space). A topology 

on C(u) i s  specified by the norm functional 

t o  be the space of continuous functions mapping a 

defined f o r  each cp i n  C(u). L e t  v be a closed in te rva l  contained 

i n  u and l e t  U be a subset of C(u). U i s  said t o  be of compact 

res t r ic t ion on v i f  the functions i n  U res t r ic ted  t o  v form a corn- 

pact subset of C(v). For each b > 0 l e t  C(u, b)  ( C(u) be such tha t  

'p i n  C(u, b )  implies /IcpII S b. For specified positive constants z and 

bl l e t  F(t ,  I)) be a function mapping [0, 03) x C([-z, 01, bl) in to  

Rn 

Theorem 1 t o  the question of existence of periodic solutions of hnc t iona l -  

d i f fe ren t ia l  equations o f  the  form 

which i s  continuous i n  each variable separately. We shall r e l a t e  

where H x denotes the t ranslat ion t o  [-T, 01 of the res t r ic t ion  of 

the function x t o  [ t  - a, 21. T h a t  is, Htx(e) = x ( t  + a )  f o r  8 

i n  L-2, 01. A ( t )  i n  equation (1) i s  understood t o  denote the r igh t  

hand derivative of x a t  t . 
Let us assume that corresponding t o  each i n i t i a l  function i n  

t 

C = C ( [ - 2 ,  01, bl) 

a l l  t I O .  That is ,  f o r  each cp i n  

t h a t  equation (1) has a unique solution defined f o r  
0 

there ex is t s  a unique function 
cO 
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x such that the r e s t r i c t ion  of x t o  [-7, 01 is (p and 

?(t) = F(t, €$x) f o r  a l l  t 2 0. Furthermore, l e t  us assume that 

these solutions depend continuously on t h e i r  corresponding i n i t i a l  

functions and that F(t ,  $) is a periodic function of t of period 

w > 0 f o r  each fixed \Ir i n  Coo 

Now defining the mapping T f o r  a l l  cp i n  Co by the fornula, 

where x i s  the solution of equation (1) corresponding t o  (p, it i s  

c l ea r  from our uniqueness assumption f o r  solutions that  a fixed point 

under T 

of period 0;). T R t  U denote the set of a l l  solutions of equation (1) 

restricted t o  [0, U] which correspond t o  i n i t i a l  functions i n  

If U is  contained i n  a compact subset of C( [0, w], bl) and (1) h T, 

then it is c lear  from standard theorems that such a fixed point under T 

exists.  However, i f  w < T it is only c lear  that  8 has a fixed point 

when k is  an  integer such t h a t  Ircu 2 7. To see that Theorem 1 allows 

us t o  drop any res t r ic t ion  on the relationship between T and w i n  

concluding the existence of a fixed point under T, we have only t o  

verify that U being contailaed i n  a compact subset of 

implies 

smallest integer such that 

jz 1 the s e t  (m)j(co) is  of compact res t r ic t ion  on [-jw, 01 n 1-7, 01. 

In  particular,  therefore, since lyu 2 7 we have that (Th) (Co) is  

implies the existence of a periodic solution f o r  equation (1) 

C([O, (u], bl) 

(Th)k(Co) is  compact f o r  some integer k. But l e t  k be the 

kw 2 7 ani observe that f o r  each integer 

k 



contained i n  a compact subset of 

following theorem i s  a consequence of Theorem 1. 

Co. Thus we have proved that the 

Theorem 2. L e t  U denote the set of a l l  solutions of equation 

(1) restricted t o  [O, CD] which correspond t o  i n i t i a l  functions i n  Co. 

If U i s  contained i n  a compact subset of C ( [ O ,  a], bl), then equa- 

t i on  (1) has a periodic solution of period CD. 

To prove Theorem 1 w e  simply observe that since S is  closed 

k and convex that fh(S) ( S and consequently ( fh  ) (S )  i s  contained i n  

(fh)k'l(S). Hence 

Since it is verified i n  [21 tha t  the compactness of 

h(fh)k(S) i s  compact, the existence of a fixed point under f con- 

tained i n  (hf) (S) follows immediately from Tychonoff's theorem. 

(fh)k(S) implies 

k 

A theorem which is  essent ia l ly  equivalent t o  Theorem 2 but which may 

be mre convenient f o r  some purposes i s  as follows. 

Theorem 2' .  Ut C1 be a closed convex subset of Co and l e t  

be a subset of C1 
Suppose that H x i s  contairx?d i n  C2 for every 

which i s  of compact res t r ic t ion  on c2 

[a, 01 n i-7, 01. CD 

solution x of equation (1) corresponding t o  an i n i t i a l  function i n  

C1. Then equation (1) has a periodic solution of period CD correspond- 

ing t o  an i n i t i a l  function i n  C2. 

A simple but useful corollary t o  Theorem 2' may be obtained using a 

Lipschitz condition t o  es tabl ish compactness. 
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Corollary 1. Let C1 be a closed convex subset of Co and 

suppose that H x is contained i n  C1 fo r  every solution x of 
0) 

equation (1) corresponding t o  an i n i t i a l  function i n  cl. If there 

exists a continuous function L ( t )  such tha t  'p, and 'p i n  C1 and 

t i n  10, a1 imply 

2 

then equation (1) has a periodic solution of period o) corresponding 

t o  an i n i t i a l  function i n  C1. 

Proof. Let rpjc be a fixed element i n  C1 and l e t  x* be the  

corresponding solution of equation (1). For a rb i t l a ry  'p i n  C1 and 

the corresponding solution x, w e  have 

and 

t 

0 
x ( t )  - x*(t) = cp(0) - cp*(O) + I (F(s,HSx) - F(s,Hsx*))ds. 

Using our Lipschitz condition f o r  t i n  [0, CUI it follows that 
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Hence using Gronwall's lemma we conclude that 

Now for  tl and t2 i n  [0, a1 we have 

t2 
X ( t 2 )  - X ( t l )  = 

and 

From the integrabi l i ty  of F( t ,  Htx*) and L( t )  it follows immediately 

that the set of solutions of (1) corresponding t o  i n i t i a l  functions i n  

C1 and restricted t o  [0, CUI form an equicontinuous family of functions. 

The-refore by the A n e h A s c o l i  theorem t h i s  class of res t r ic ted  solutions 

is  compact, and t h e  application of Theorem 2' completes o w  proof. 

It often happens i n  the literature that a condition of uniform 

(with respect t o  

l i t y  f o r  solutions of equations such as (1) is useful i n  concluding that 

t and the space of i n i t i a l  functions) asymptotic s tabi-  
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a transforrnation such as T 

set of in i t ia l  functions in to  itself. 

f o r  the theorems concerned with periodic  solutions of perturbed systems 

contained i n  [ 3 ] .  One may observe that i n  many of these s i tuat ions the 

set of in i t ia l  functions Co considered under the tmnsfonnation T 

may be replaced by a compsct set h(Th)k(Co) and by s o  doing an expl ic i t  

assumption of uniform asymptotic s t ab i l i t y  is replaceable by an assump- 

t i o n  of asymptotic s t a b i l i t y  only. 

(defined by (2))  maps an appropriate 

For example, this is  the case 

Another very interest ing asymptotic fixed point theorem which i s  

a s ignif icant  generalization of the Schauder theorem is pEsented by 

Browder i n  [4] and i s  as follows: 

Browder's Theorem. Let S and SI be nonvoid open convex sub- 

sets of a Banach space X, So a closed convex subset of X, 

so( s1C S, f a cmpact mapping of s into X. Suppose that f o r  a - 
UL 

posit ive integer m, 

w h i l e  fm(sl) ( so. Then f has a fixed point i n  so, 

P" is  wendefined on sl, u fJ(So) c sl, 
j=O 

The tern compact mapping used i n  the above theorem implies that 

f i s  continuous a d  f maps S in to  a compact subset of X, Interest- 

ing appucations of Browder's theoran may be found i n  El and [61. 

Iet u8 now consider the system 

where X o ( t ,  u, v)  and Xl( t ,  u, v, E) are n-dimnsional vector func- 

t ions  continuous i n  t h e i r  respective arguments separately, periodic i n  
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t of period 03, and defined f o r  t 2 0, E small, and IuI + Ivl C M 

f o r  some constant M > 0. Furthermore, l e t  us assume t h a t  f o r  some 

positive continuous function L ( t )  and every (ul, vl) 

i n  the domain of Xo, 

The f o l l o w i n g  theorem i s  derived frcm resul ts  presented 

using Browder's theorem i n  [TI.  

Halanay's Theorem. L e t  w > r 2 0 and l e t  the equation 

have a uniformly asymptotically stable periodic solution yo of period 

w such that lyo( t ) l  + lyo(t - 7)1 < M f o r  t i n  [0, a]. Suppose 

that for every continuous function cp defined on [-r, 01 such that 

l q (e )  - yo(a0)(0) 1 < b2 f o r  8 i n  [-r, 03 there corresponds a unique 

solution x of equation ( 3 )  and that these solutions depend continuously 

on t h e i r  i n i t i a l  functions. 

has a periodic solution xE 

Subsequently i n  t h i s  

point theorem on a space of 

Then for E s u e i c i e n t l y  small equation ( 3 )  

of period w and l i m  xE( t )  = yo(t) .  
E -+o 

paper we shall present an asymptotic fixed 

continuous functions and construct i t s  proof 
\ 

through the use of Browder's theorem and the Amela-Ascoli theorem. 

S h a l l  then use t h i s  new theorem and prove a theorem along the l i nes  of 

Halan&yls theorem but stronger and more general. 

We 

I n  particular,  we w i l l  
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prove a theorem which is  valid f o r  a much broader class of functional- 

d i f f e ren t i a l  equations than represented by (3) and which impose no con- 

d i t ion  on the  relationship between r and o, and require only the 

existence of a closed convex discretely asymptotically s tab ly  nonincreasing 

set f o r  the unperturbed eqmtion. 

L e t  I denote the  closed interval  [al, a*], a > a  and 2 1' 

l e t  Y denote a f i n i t e  dimensional Bnach space. For s i n  Y 

l e t  I s  I denote the norm of 6. C [I, Y] shall denote the s e t  of con- 

tinuous function lnapping I into Y, a d  11 11 denotes the norm func- 

t i ona l  defined f o r  arbitmry x i n  C [I, Y] by the formula 

Theorem 3. For a specified positive constant b le t  XC C[I, Y] 

be such that x i n  X, t # t' and t, t' i n  I imply 

Ix(t) - x ( t ' )  I < b l t  - t' I, 
an open convex subset B of X into X. 

void bounded open convex subsets of X, B a closed convex subset of 

and l e t  f be a continuous function mapping 

L e t  %, B2, and B be non- 3 

0 - - 
C[I, Y1 contained i n  X, and l e t  Bo c B1, %< B2, and B ~ C  B~( B. 

If fo r  some positive integer m, fm is well-defined on B 

f o r  Y =  1, . . ., m - 1, and fm(B,) ( Bo, then f has a fixed point i n  

fY(B1) ( B2 3' 

BO' 

L e t  P'l denote the s e t  of elements x = (xo, . . ., xk) where 

x is  contained i n  the Banach space Y for i = 1,2, ..., k. In  pre- 

pardtion t o  proving Theorem 3 it is convenient t o  f i r s t  prove the follow- 

i 

ing lemma which i s  an easy consequence of Rrowder's theorem. 
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kmm 1. kt x* c yk+' be the set of a n  e k m n t s  

x = (xo, ..., xk) 

i, j = 0,1, ..., k w h e r e  y is  some posit ive constant. Let U and U1 

be nonvoid bounded open convex subsets of Yk"' and l e t  Vo be a closed 

convex subset such that x i n  Vo implies 

i , j = O , l ,  ..., k where y > y o > O .  Let V = U n X * .  V 1 = U 1 i l X * ,  

and V o (  V,( V. If f i s  a continuous mapping of V in to  X* and 

f o r  some positive integer my 

f o r  v = 1, ..., m-1, 

such that ]xi - x.1 < $li - j I  f o r  i # j and 
J 

yo 
Ixi - xjl 5 +i - jl f o r  

fm is well-defined on VlY f v ( V o )  ( V1 

then f has a fixed point i n  and fm(V,) ( Vo, 

vO' 

Proof. Let x = (xo, ..., xk) and y = (yo, ..., yk) be arbi- 

t r a r y  points i n  X* and l e t  X be contained i n  the in te rva l  [O, 11. 

Then f o r  i, j i n  ( O , l ,  ..., k) we have 

I [ (Lh . )Xi  + xyil - [ ( L X ) X j  + X Y j l  I 5 (1-X) IXi'X .I + XIYi-Y. I < Eli  - JI. 
J J 

Hence X* i s  convex and consequently so are V, V1 and Vo. Now con- 

sider a rb i t ra ry  x i n  X* and l e t  

0,1, ... Y k, 6 =  m a x j ( i _ j ~  , i #  3, i , j  = I F I X i  - X j l  

t. 

and iV(0) = { z  : l lzll < %). For y i n  x + N ( 0 )  w e  have 

IYi - Y j l  SIXi  - x.1 J + IZi - Z j l ,  

where z i s  i n  N ( 0 ) .  Hence y i n  x + N(0) implies 

f o r  i # j, i, j = 0,1, ..., k, so X* is open and consequently so are 

V a d  V1. Therefore, invoking Bmwder's theorem it follows immediately 
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that f has a fixed point i n  Vo and our lemma is proved. 

Now proceeding with our proof of !Cheol.em 3 w e  associate with 

each posit ive integer k the pa r t i t i on  determined by the s e t  

Pk = (ti : ti = a1 + 3ai - al), i = 0,1, ..., k] 

of the  in te rva l  I = [al, a2] and f o r  each x i n  X l e t  p,(x) de- 

note the ordeEd set 

We define x and y i n  X as k-equivalent i f  pk(x) = pk(y) and f o r  

each x i n  X we denote by gk(x) the set of a l l  elements i n  X 

which are k-equivalent t o  x. Since 

bounded, and equicontinuous families of functions i n  

by a straightforward generalization of the Ane&-Ascoli theorem as stated 

i n  Kolmogoruv and Fomin [8] that Bo and are compact. Consequently 

f o r  a l l  k chosen suf f ic ien t ly  large we have 

Bo and g2 a= closed, uniformly 

C [ I ,  Y] w e  have 

= (gk(x) : x i n  Bo] cBl  so 

and 

s2 = ($(x) : x i n  B ~ } C  B ~ .  

Hence our hypotheses concerning f imply tha t  f o r  k suf f ic ien t ly  large 

fj(so) c s2 f o r  j = 1, . . ., m-1, P(s,) c so. 
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Let t ing  % = (gk(x) : x i n  X) w e  define the mapping 

$ : %+ Yk’l by the fortnula 

Inducing the topology of 3” on % it is  obvious that $ is  a homeo- 

morphism. Since B(  X and x i n  X implies Ix(tl) -.) x( t2)  I < b It,-t2 1, 
it is also c lear  that EW = ($(gk(x)) : x i n  B) is  contained i n  X* 

where X* is the s e t  of a l l  elements x* i n  such that 

Ixy - x%l < $  li - jl f o r  i , j  = 0,1, ..., k, i # j, and r =  b(a2 - al) 
J 

L e t  x* and yjc be arb i t ra ry  i n  EW and l e t  X be any number i n  the 

where, since B i s  convex, z i s  contained i n  B. Hence 

(1 - h)x* + Xyjc is  contained i n  EP and it follows that  EP i s  con- 

vex. Also B open i n  X c lear ly  implies EP is  open i n  X*. De- 

rining 3 = ($(gk(x)) : x i n  Bo} and B$ = ($(gk(x)) : x i n  B2} 

it fo l lows  from essent ia l ly  the same argument used with 

is closed, bounded, a d  convex and P 2 

P that 

i s  open, bounded, and convex. 



Now f o r  k sufficiently large we have f j Jr -1 (3) = f 3 (So) ( S2 

m -1 f o r  j = 1,2, . .> m-1, a d  f ~r (9) ( fm(s2) C so. 

and 

Since Bo is  a compact subset of X it follows that there ex is t s  a 

posit ive number bo < b such t h a t  x i n  Bo implies 

Ix(ti) - x ( t j )  I 6 bo Iti - t 1 
c lear  that 

f o r  i, j = 0,1, ..., k. Hence it is  3 
TO is  such that fl i n  % implles 13 - "51 si li - jl 

w h e r e  

each k suff ic ient ly  large there exist q in 5 such t h a t  

To - - bo(a2 = al) < y. We ham, therefore, from Iemm 1 t h a t  f o r  

and consequently 

Thus f o r  each k suff ic ient ly  large there ex is t  xk i n  Bo such that  

xk is  contaimd i n  f (g(%)) .  But considering the sequence 

generated a s  k tends t o  i n f i n i t y  we see t h a t  [xk} being contained i n  

the compact s e t  Bo implies it must contain a subsequence [xp] which 

converges t o  a point x" i n  Bo. 

f%3 

We also observe t h a t  
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..w 
Hence clear ly  g (x ) must a l so  converge t o  x. Therefore, since x 

is  contained i n  f (g(x  ) )  and f is continuous, we may conclude 

that f(g)  = x" and our theorem is proved. 

We remark that the technique i l l u s t r a t ed  i n  Theorem 4 can be 

For example, 

P P  P 

P 

very useful i n  a wide var ie ty  of asymptotic problems. 

the  principal result contained i n  15 1 u t i l i ze s  asymptotic i n s t ab i l i t y  

and a similar technique. 

the result of Theorem 4 but associated with a more general concept of 

perturbations i s  presented i n  [g]. 

A l s o  a theorem giving a result very much l ike  

L e t  V be a subset of Co and f o r  every positive number E 

l e t  NE(V) denote the s e t  {y : lly - xll < E ,  x i n  V}. V w i l l  be 

said t o  be s t r i c t l y  contained i n  a set U i f  there ex is t s  a number 

6 > 0 such t h a t  N6(V) ( U. Proceeding now with our discussion of 

periodic solutions of functional-differential equations we define several  

notions of s t a b i l i t y  f o r  se t s  associated with functional equations of 

the form of equation (1). F i r s t  of a l l a  set V is  called a d iscre te ly  

stably bounded s e t  of equation (1) i f  the following condition i s  satis- 

f ied. 

(a) There exist a constant b 2 0 such that f o r  every E > 0 

there ex is t s  a 6 > 0 such that i f  cp i s  contained i n  N6(V) and x 

is a solution of equation (1) corresponding t o  9, then %x i s  con- 

tained i n  Nb*(V) f o r  a l l  positive integers k. 

It is c lear  t ha t  if equation (1) has a periodic solution of 

period u) which is stable i n  the usual sense, then it has a discretely 

stably bounded s e t  w i t h  b = 0 and consisting of a single element. It 



-15- 

i s  a l so  c lear  that  if  condition (a) is  satisfied then f o r  every posi- 

t i v e  integer n the mapping !I?, with T defined by (2), sends V 

i n to  Nb(v). Hence if V is closed and convex, b = 0, and an appro- 

priate Lipschitz condition is satisfied, the existence of a periodic 

solution of period o follows fran Corollary 1. If b denotes the 

smallest nonnegative number f o r  which c o d i t i o n  (a) is sat isf ied,  then 

we will refer t o  ‘FJ as the domain of expansion of V. 

A s e t  V is  called a discretely asymptotically s tably nonincreasing 

set of equation (1) i f  condition (a) together w i t h  the following condition 

i s  satisfied. 

(b) There exist a sequence (J of positive integers tending t o  

i n f i n i t y  and a constant [ > 0 such that if i s  the domain of 

expansion of V, cp is  contained i n  I$+[(V), 

equation (1) corresponding t o  9, and 9 is an arb i t ra ry  positive 

constant, then f o r  a l l  integers k i n  a and suf f ic ien t ly  large, L x  

is  contaiEd i n  N (V). 

x is  the solution of 

I 9 
We may observe that i f  equation (1) has a periodic solution of 

period co which is  asymptotically stable i n  the usual sense, then it 

has a discre te ly  asymptotically s tably nonincreasing set with b = 0, 

(J the set  of a l l  positive integers, and consisting of a single eleloent. 

We a l s o  note t h a t  the  notion of asymptotically s tably nonincreasing sets 

f o r  functional-differential  equations i s  similar i n  nature t o  a condi- 

t i o n  of ultimate boundedness (in the sense of Yoshizawa) on the soh- 

t ions of such systems. Sets having the properties of % (V), as 

specified i n  (b), w i l l  be called domains of discrete  asymptotic attrac- 

t i o n  f o r  V. 

, 
+c 
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A set V is  called a uniformly discretely asymptotically 

stable nonincreasing set of equation (1) i f  condition (a) together 

with the  following condition i s  satisfied. 

( e )  There ex i s t  a sequence Q of positive integers tending 

t o  inf in i ty  and a constant 4' > 0 such that i f  is  the domain 

of expansion of V and q is an arb i t ra ry  posit ive constant, then 

there exists a positive integer q i n  asuch t h a t  for a l l  integers 

k 2 q and contaiEd i n  u , H x is  contained i n  Nq(V), kco 
i s  a solution of equation (1) corresponding t o  an i n i t i a l  function 

where x 

A s  a simple application of Browder's theorem we have the follow- 

ing resu l t .  

Theorem 4. Iet equation (1) have a convex uniformly discretely 

asymptotically s tably nonincreasing set  V with the  domain of expan- 

s ion of i t s  domain of expansion s t r i c t l y  contained i n  
Co. Furthermore 

suppose the mapping 

on [- 7, 01 n [- CI), 01. 

T as defined by (2)  i s  of compact res t r ic t ion  

Then equation (1) has a periodic solution of 

period a. 

Proof. U t  'w' denote the domain of expansion for V and 

f o r  each t 5 0 l e t  kt denote the largest  integer  multiple of cu 

not exceeding t. 

sequence 

O u r  hypotheses c lear ly  imply the existence of a 

a of positive integers tending t o  i n f i n i t y  and a constant 
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c > 0 such that i f  cp i s  contained i n  %+{(V) and 7 is an arbi- 

t r a r y  posit ive constant, then there exis ts  an integer q 2 - and 

contained i n  u such tha t  f o r  a l l  Et 2 with iq/u contained i n  

Q and a l l  solutions x of equation (1) corresponding t o  an  initial 

7 

0 

function i n  %+((v), we have H x contained i n  N (V). 

%(V) is  s t r i c t l y  corrtaiEd i n  Co, there exists a number 6 such that 

0 < 6 < c and ( Co. L e t  with 0 < 4 < 6 be such that 

Since e t  9 - 

cp i n  N (V) implies H x is  contained i n  Nb+s(V) f o r  a l l  t 2 0. 9 5, 
Sett ing 

operator T, we  may assert that T ~ ( N  (VI) c N~+&(v)  f o r  a l l  j 2 1 

and Tq(I$+6(V)) Nk8 (V). Furthemole we have by hypothesis that 

7 = Ij1/2 and interpreting our observations i n  terms of the 

9 
2 1  

L 

Tq(%+,(V)) is canpact and by the mzur theorem so i s  i ts  closed con- 

vex hull .  Obviously h(Tq(%+,(V))) is  contained i n  N (V), s o  we 

have fulf i l led the hypotheses for  Rrowder’s theorem and can conalude 
6l 

that  T has a fixed point cp i n  N (V). It follows, of course, 

that the solutions of equation (1) having 
4 

q as an i n i t i a l  function 

i s  periodic of period a, so the proof o f  our theorem i s  complete. 

Now defining G t o  be a function mpping [O, m) x Co x [0, el] 

i n t o  Rn, 

d i f f e ren t i a l  equations of the form 

where c1 is  some posit ive constant, we consider functional- 

k ( t )  = G ( t ,  Htx, E). ( 5 )  
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%(t) 

G ( t ,  Jl, E) 

in t of period a(€). a i s  assumed t o  be a continuous function on 

[O, El] and the existence of a posit ive continuous functional 

p( t ,  Jl, E) defined on [0, a) x Co X [O, cl] i s  assumed such that 

and 9 are defined fo r  equation (l), and we suppose that 

i s  continuous i n  each variable separately and periodic 

f o r  E suff ic ient ly  s m a l l .  Furthermore, we assume the existence of 

a continuous function L ( t )  such t h a t  f o r  a rb i t ra ry  'pl and 'p i n  

Co and t i n  [O, a) we have 

2 

Theorem 5. Let the equation 

have a convex discretely asymptotically s tably nonincreasing set 

V 

contained i n  Co. 

fined f o r  a l l  t 2 0 corresponding t o  each i n i t i a l  function i n  Co and 

each E i n  [0, E ~ ] .  Suppose fur ther  that  these solutions depend con- 

tinuously on t h e i r  i n i t i a l  data. Then f o r  each E suf f ic ien t ly  small 

equation ( 5 )  has a periodic solution xE of period a(€). 

with the domain of expansion of i t s  domain of expansion s t r i c t l y  

Suppose t h a t  equation ( 5 )  has a unique solution de- 
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Proof. Let v) denote the  domain of expansion f o r  V, 

and f o r  each t Z 0 let 5 denote tk largest  integer t l e t  U ( E )  = uE, 

multiple of coo not exceeding t. Our hypotheses c lear ly  imply the 

existence of a sequence (T of positive integers tending t o  i n f i n i t y  and 

a constant 5 > 0 such that if' cp is  contained i n  Q , ( V ) ,  

the  solution of equation (8) corresponding t o  'p, and 9 i s  an arbi- 

t r a r y  posi t ive constant, then f o r  a l l  suff ic ient ly  large and w+th 

€+/ao contained i n  a, H z is contaiEd i n  N (V). Since 'Fj is 

s t r i c t l y  contained i n  there exis ts  a number 64 such that 

0 < 64 < 5 and Nb+6 (VI c co. et 63Y 6 p  and 61 be such that 

0 < € I ~  < 62 < 6 < 9 and cp i n  N (V) implies H z is  contained 

in 
implies t h a t  f o r  a rb i t ra ry  sohrtions z of equation (8) corresponding 

t o  i n i t i a l  functions i n  %+& (v) we k v e  f o r  t < et 

z is  

Et 

E t  9 

3 'i E t  
(V) f o r  i = l ,2,3 and aU. t 2 0. Clearly condition (7) 

that 
+ Uo 3 

t 
4 % )  = .(E,) + I G ( s - E t ,  HSZY O)&, 

e t  
and 

t t 

Hence using Gronwall's l e m  w e  bave 
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Since H z is contained i n  Co f o r  a l l  t h G, it follows tha t  

IIH 211 5 bl and the existence of a constant M1 

llHtzII 5 M,- for a l l  t 2 0 is clear.  

positive numbers such that  

E t  
such tha t  

k t  
Now l e t  tl and t2 be two 

0 € t2 - tl < oo but otherwise arbi t rary.  

Thus it is a l so  clear 

the particular choice 

that there ex i s t  a constant c, independent of 

of tl and t2, such that 
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Since the closure of 

our asymptotically stably nonincreasing condition that we m y  choose 

a constant tj0 PO that 0 < tj0 < tjl and a positive integer q such 

that cp i n  K and z the corresponding solution of equation (8) imply 

K is  compact we have as a conseqcence of 

that H z is  contained i n  % n NE (V) f o r  a l l  integers j Z q and 
j”0 0 

contained i n  a. 

Now f o r  an a rb i t ra ry  in i t ia l  function cp i n  E l e t  us consider 

the corresponding solution z of equation (8) and the corresponding 

solution x of equation ( 5 ) .  we have 

and wing (6) and (7) w e  get  

t t - 
Ix(t) - z ( t ) i  E I p(s, Hsx, ~ ) d s  + I L(s)IlHsx - Hsz/lds. 

0 0 

Thus 

and again employing Gronwall’s lemma it follows that 

Since OUT set of i n i t i a l  functions K is  conditionally compct it 

follows t ha t  our functions 5 x  are contaiEd i n  a compact set. Thus we 

may as se r t  the existence of a constant % such that 
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f o r  a l l  t i n  [0 , qloo] where q1 is  a fixed integer  greater than 

q and x i s  allowed t o  be an a rb i t r a ry  solution of equation (5) corres- 

ponding t o  an i n i t i a l  function i n  

c lear ly  conclude that there ex i s t s  a constant 

suf f ic ien t ly  small and a l l  t 5 q u) 

K. Substi tuting (12) i n  (11) w e  can 

such t h a t  f o r  a l l  E M3 

1 0' 

Thus we can assert the existence of a constant M such that 

and 

f o r  a l l  E and It - s I su f f ic ien t ly  small and t 5 qluo. I n  particu- 

lar we have 

fo r  E suf f ic ien t ly  small. I n  addition,choosing E such that 
6- -6 

E M < ?  -o it follows that H x i s  contained i n  the neighborhood of 
w€ 

N (V). Again choosing E suf f ic ien t ly  small and i n  par t icu lar  such 

that  
6 - 6  6 6 1 o 3 - 2  4 

6 M < min( 7, w e  have by (14) that i f  x corresponds 
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t o  an in i t ia l  function i n  N (V) fl K, then  H x i s  contained i n  the 9 &E 
neighborhood of N (V) f o r  a l l  integers j such that bE 5 qlwo 

w h e r e  p = b +-  . NOW c lear ly  f o r  tl and t2 i n  [o, ql/oo] 

such that 0 < t2 - tl < u0 w e  have 

p 1  
6 +6 

1 2 

where L* denotes the maxhum value of L ( t )  on [O, qlmo]. Hence 

obviously E can be chosen suff ic ient ly  small so that %x f o r  all solutions 

x of equation ( 5 )  corresponding t o  i n i t i a l  functions i n  N (V) n K 

w e  have 

i n  c-7, q1 (u ] and tl # t2. That  is, Hox i n  NE (V) fl K implies 

€$x i s  contained i n  K f o r  a l l  t in  [0, ql(uo] when E i s  chosen 

suf f ic ien t ly  small. It is clear from the continuity of 03, of course, 

4 
Ix(t2) - x(t l ) l  < 3c It, - tlly when tl and t2 are contained 

3 

that qmE < qlao f o r  E chosen suff ic ient ly  small. Now l e t  

= n 5, and l e t  q, B;, and B; denote the intersections 
0 - B: 
2 

of N6 (V), Np2(v), and N (V) respectively w i t h  K where 
1 p3 6, +a- 

3' 
and p = b + 6  

3 
= b + -  p2 2 

We now define a mapping TE on C, f o r  each E i n  [0, 51 by 

the formula 



where x, of course, i s  the  solution of equation ( 5 )  with H x = cp. 

Clearly our hypothesis of continuous dependence on i n i t i a l  data implies 

TE 
f o r  a l l  posit ive 

integers k 5 q and T3B;) ( B; when E i s  chosen suf f ic ien t ly  s m a l l .  

Furthermore, t he  sets BA, B;, B;, and Bt have the  same structure  as 

required f o r  t he  se t s  Bo, B1, B2, and B of Theorem 3 respectively 

and are interrelated i n  the  same fashion. Therefore it follows from 

Theorem 3 that T, has a fixed point qE i n  BA, and, of course, t he  

solution of equation ( 5 )  having 

periodic of period aE and our theorem is established. 

0 

k i s  continuous and we have shown tha t  TE(Bi )  ( B; 

3 

3 

cpE as an i n i t i a l  m c t i o n  must be 

The question of t he  "nearness" of periodic solutions of equation 

E becomes s m a l l  is  not i n  general t r i v i a l l y  answered. ( 5 )  and (8) as 

W e  do know, however, tha t  t he  hypotheses of Theorem 5 are not i n  general 

suff ic ient  t o  conclude tha t  an arbi t rary periodic solution of equation (8) 

w i l l  have a s m a l l  neighborhood containing periodic solution of equation 

( 5 )  fo r  each E chosen suf f ic ien t ly  s m a l l .  In fact ,  w e  can not even 

conclude the existence of any periodic solutions of equation (8) with 

t h i s  property. Subsequently i n  t h i s  paper w e  shall indicate i n  Lemma 2 

what can be said with no additional hypotheses and then present several  

theorems which indicate conditions and types of loca l  behavior i n  a 

neighborhood of a specified periodic solution of equation (8) which w i l l  

imply "nearby" periodic solutions f o r  equation ( 5 )  when 

s m a l l .  

functions with different periods being "near" each other. 

E i s  suf f ic ien t ly  

First, however, l e t  us c l a r i fy  w h a t  we s h a l l  mean by two periodic 
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We begin by defining for som positive number po the set of 

functions 

= U ( ~ ( 1 0 ,  P I )  : p i n  (0, pol). 

For each pair of elements cp and $ i n  Sl c lear ly  cp is contained 

i n  C([O, p11) and $ is  contained i n  C([O, p,]) f o r  som p a i r  of 

numbers p1 and p2 i n  [O, pol. 11 11 is defined fo r  each such pair 

of elements i n  R by the fornula 

lk - $11 = SUP( MP,.) - *(P2T) I : T i n  co, 111 (17) 

A periodic function x i n  C([O, w))  of period p1 w i u  be said t o  

be contained i n  an rpneighborhood, q > 0, of a periodic function y of 

period p2 i n  C( [0, w ) )  i f  the restr ic ted functions xlpl and ylpB 

are such that 

I 
I 

, I 

w h e r e  11 11 is taken i n  the sense of (17). 

Lemm 2. Let the hy-potheses of Theorem 5 be satisfied and f o r  

each E i n  [0, f l ]  l e t  QE denote the set of periodic solutions of 

equation ( 5 )  of period a(€) 

subset S of Co contained in a domain of discrete  asymptotic a t t r ac -  

t i o n  of V. f o r  

corresponding t o  initial functions in a 

For q an a rb i t ra ry  positive constant, QE ( Nq (Qo) 
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each E suf f ic ien t ly  small. 

Proof. It i s  olear from the proof of Theorem 5 that S m y  be 

replaced by K1 without changing the structure of QE when e is 

chosen suff ic ient ly  smll. The se t s  &E are obviously compact and de- 

f ining the mapping 

we have t h a t  Ibo(cp)II > 0 5 - N (Q ). i s  

compact, it follows that there ex i s t  p > 0 such tha t  Ileo(cp))I Z p f o r  

x i n  % - N (Q ). If E i s  chosen suf f ic ien t ly  small we may as se r t  

that lleE(cp) - ~ ~ ( c p ) l j  < p/2 fa- a n  x i n  K~ - N 4 Q~ 1 , 

on Hence since 5 - Nq(Q0) 
' 1 0  

110 

so 

f o r  all cp i n  % - N (Q ). Therefore, it must be that QE is  con- 

tained i n  N (Q ) f o r  E suff ic ient ly  small and our lermna is  proved. 
110 

1 1 ,  
L e t  us now state a theorem which asserts that i f  xo is  unique, 

then perturbed systems of the form of equation ( 5 )  have periodic s o h -  

t ions "near" x 
0. 

Theorem6. Let the hypotheses of Theorem 5 be sa t i s f ied .  Further- 

more, suppose that xo 

t i o n  of equation (8) of period and w i t h  an i n i t i a l  function con- 

tained i n  Co. Then every neighborhood of xo contains a periodic solu- 

t i on  for equation ( 5 )  of period fo r  each € suf f ic ien t ly  s m l l .  

i s  unique with respect t o  being a periodic solu- 

oo 
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Proof. Let &E be as defined in Urnma 2. Then by Le= 2, 

f o r  7 an a rb i t r a ry  positive constant, we have that QE ( N ( Q  ) 

f o r  each E suff ic ient ly  small. But by hypothesis Qo contains a 

sirgle element To, so &E is  contained i n  N (cp ). O u r  theorem now 

follows a t  once as a consequence of the continuous dependence of solutions 

of equation ( 3 )  on E and i n i t i a l  data. 

9 0  

9 0  

One may observe generally that i f  for 9 an arb i t ra ry  positive 

constant w e  have that f o r  each E suff ic ient ly  smll that 

Qo ( Nq(Q,), then i n  every neighborhood of each periodic solution f o r  

equation (8) 

for equation ( 5 )  of period oE f o r  each E suf f ic ien t ly  small. 

of period a0 there is at h a s t  one periodic solution 

Lema 3. L e t  u be a bounded interval, c a posit ive constant, 

ard l e t  X( C(u) be the set of all elements x such that  

Ix(tl) - x(t,) I s c l t  -t I f o r  a l l  tl and t2 i n  u. ut L be a 

continuous linear operator mapping X onto X. Furthermonz, l e t  6 > 1 

be a constant, and l e t  S be a bounded open subset of X which contains 

the zero element 0. If f i s  a continuous function mapping S in to  X 

f o r  each E i n  s m  in te rva l  [0, E ~ ]  and such that 

1 2  

w h e r e  p(x, E )  is continuous jo in t ly  i n  its argumnts and 

g(x) = O(llxl16) as 11x11 4 0, then for each E suf f ic ien t ly  small f ( S )  

contains a neighborhood of 0 which is open i n  X. 

Proof. L has a continuous linear inverse L - ~ ,  so we may write 

w e  have 
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f*(x, E) = x + @(X) + E P ( x ,  E). 

NOW l e t  p > o be such that ii-(Z) n x c L(S) n s and l e t  M~ and 
CL 

- 
SO tha t  N ( 0 )  n X C  N (0) n x and ~,llxll < TL/4 f o r  a l l  x i n  

tl CL 
'mf n X. Now selecting an a rb i t r a ry  element z i n  Nf i (0 )  n X w e  

7 
define the mapping 

q(x, E) = z + x - f*(x, E) 

f o r  x i n  n X. NOW 

w 

so clearly f o r  each E 9 we have that q mps N (0) n X in to  

itself'. 

by the Birkhoff-Kellogg fixed point theorem) 

2M2 7 
Thus by the Schauder fixed point theorem (or f o r  that matter 

has a fixed point i n  q 

i n  NTJ4(0) n X and each E 5 A 
2% 

n X. That is, f o r  each z 

11 
there exists a point x1 i n  -1 n X such that we have 

which obviously implies z = f*(xl). Hence we have shown that  

(0) il X is contained i n  f*(mj n X) f o r  each E suf f ic ien t ly  N,J4 11 
small. But Ndk(0) n X contained i n  f*(m n X )  implies 

tl 
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and L being a homemorphism implies L(N (0) fl X) is open i n  

X. 
TJ4 

Therefore, the proof of our le- i s  complete. 

W e  shall now use Umns 3 t o  obtain a lather c q r e h e n s i v e  re- 

sult on the continuity of periodic solutions which should prove useful 

i n  applications. The c o d i t i o n s  imposed are of such a nature that one 

might reasonably expect t o  be able t o  verify them i n  physical systems. 

Theorem 7. Iet the hypotheses of Theorem 5 be sat isf ied,  l e t  X 

denote the l inear  extensions of % as defired by (lo), and l e t  L be 

a continuous l inear  operator mapping X onto X. In  addition, let 

6 > 1 be a constant, l e t  'po be an  element i n  V, and l e t  S be some 

open subset of X containing 'p,. Z€' f o r  each cp i n  S 

where z 

function cp and g(q  - q0) = ~ ( l k p  - (poll ) then the 

solution xo of equation (8) corresponding t o  cp is a periodic s o h -  

t i o n  of period uo. Moreover, every neighborhood of xo contains a 

periodic solution f o r  equation (3) of period uE f o r  each E suffi- 

c ien t ly  small. 

is  the solution of equation (8) corresponding t o  the i n i t i a l  
6 as - cpJ -+ 0, 

0 

Proof. It is immediately obvious fran (21) t h a t  'po i s  a fix-3 

point under To (as defined by (16)) and consequently xo is a periodic 

solution f o r  equation (8) of period coo. therefore proceed t o  ver i fy  
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that every neighborhood of xo contains a periodic solution f o r  

equation (3) of period 'uE when E is suff ic ient ly  small. Consider- 

i n g  TE 

t h a t  w e  m y  choose a positive constant p and E suf f ic ien t ly  small 

(as defined by (16)) we observe that our hypotheses imply 

so t h a t  

f o r  a l l  cp i n  N (cp ) n X. Fu r the rmo~ ,  (14) implies tha t  p may be 

selected s o  that 
P O  

fo r  a n  cp i n  N (cp ) n x and E suff ic ient ly  s m a ~  where q(cp, E )  

is continuous jo in t ly  i n  i t s  arguments. Now define 
P O  

f o r  $ i n  N ( 0 )  q*($, € 1  = q(qo + \lr, E ) ,  a d  l e t  q be 

an arbi t rary positive constant. 

positive constant 6 such that 

CI 
By Umma 3 we have that tbere e x i s t  a 

so i n  par t icular  0 i s  contained i n  e e ( N  (0)). That is, there is  a 

point $, i n  N (0) such t h a t  
rl 

7 
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f o r  each E: sufficiently small ard letting 'p, = q1 + qo xe have 

~hrt clear ly  (22) a& (23) imp- that 

so  (25) -lies TE(g),) = 9,. Therefore, since q was chosen arbi- 

t r a r i l y  and 'p1 is contained i n  N (9 ) it follows tha t  every neighbor- 
r l o  

hood of 'po contains a fixed point of TE f o r  each E suff ic ient ly  

small. 

on their i n i t i a l  data w e  m y  conclude, of course, that every neighbor- 

since w e  have that solutions of equation (5 )  depend continuous- 

hood of xo contains a periodic solution f o r  equation ( 5 )  of period 

f o r  each E suff ic ient ly  small and our proof i s  complete. % 

Iet us now extend somewfust the results of Lemma 3. 
i 

Iemm 4. Iet the hypotheses of L a m  3 be sa t i s f ied  and f o r  each 
I 

I E i n  [0, €4 l e t  denote the s e t  of points x i n  5 such that  

f(x, E) = 0 and l e t  e = ~ { e ,  : E i n  [0, ~ ~ 1 ) .  Then o is  contained 

i n  6 and the canponent fP of 6 corrtaining 0 intersects f o r  

each E suff ic ient ly  sunll. Furthemore, i f  Ge is t o t a l l y  discon- 

nected i n  an  open neighborhood of 0 i n  X f o r  E suff ic ient ly  small, 

I 
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then there is a continuous function { ( E )  mpping some interval  

[0, cO1, eo > 0 ,  in to  X such that for  every E i n  [0, E ~ ] ,  

f(W, 4 = 0- 

Proof. It i s  obvious that f(0, 0) = 0 so 0 is contained i n  

e. Suppose one can select E a r b i t r a r i l y  small so that  @ n e€ i s  

empty. Then since @ and are closed, there exist q > 0 such 

that N (8n) n N,.(eE) is  empty. But N (0) i s  contained i n  Nq(@) 

and there i s  a neighborhood N (0) c TE ( N q ( 0 ) )  f o r  a l l  E suffi- 
CI 

ciently smll which, of course, implies Nq(0) and eE intersect  

f o r  a l l  E suff ic ient ly  small. Thus we have contradicted our  supposi- 

t ions and can therefore conclude the existence of a constant such 

tha t  for  a l l  E i n  [0, E ~ ] ,  @ n eE is not empty. If, i n  addition, 

rl v 

c0  

i s  t o t a l l y  disconnected i n  an open neighborhood of 0 i n  X f o r  

E sufficiently small, we may choose E such that @ r l  e, consist 

of a single element fo r  each E i n  [O, E ~ ] .  Defining 6 on [0, cO1 

by the formula 

eE 

0 

it i s  c lear  that 6 is continuous and such that f([(e),  e )  = 0. There- 

fore the proof of our lemrna is  complete. 

Now with Lemma 4 as a t o o l  w e  extend the resul ts  of Theorem 7. 

Theorem 8. Let  the hypotheses of Theorem 7 be sa t i s f ied  and 

l e t  YE f o r  each E i n  [0, el] denote the set of periodic solutions 

f o r  equation ( 5 )  of period me, and l e t  
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P = UIP; : E in [o, E l l ) .  

There ex i s t s  a connected subset !F of I which contains x and 

intersects  YE f o r  each E suf f ic ien t ly  small. Furthemon=, if 

YE intersected with s c a ~  open neighborhood of xo is  t o t a l l y  discon- 

nected f o r  each E suf f ic ien t ly  small, then there exists a continuous 

function E ( € )  mapping som intern1 [0, E ~ ] ,  eo > 0, i n to  P such 

that f o r  every E i n  LO, eo], E ( E )  is a periodic solution f o r  

equation ( 5 )  of per icd  aE. 

0 

Proof. W i t h  S defined as i n  Theorem 7 let eE denote the s e t  

of points i n  S -. 'po such that e€($) = 0 f o r  each E i n  [O, ~~1 

where  OE is  a s  defined by (24). Employing I;emma 4 w e  have that the 

component @ of the set 6 = (eE : E in [O, 511 which contains 0 

in te rsec ts  eE f o r  each E in some interval  [0, E ~ ] .  Hence using 

(23)  and (26) we have TE(cp) = rp f o r  each cp i n  8" + 'po and E i n  

[0, eo]. 

corresponding t o  init ial  functions i n  

Defining Y* t o  be the s e t  of solutions of equation ( 5 )  

8" + 'po it follows from our hypo- 

I I thesis of continuous dependence on i n i t i a l  data that ?€'* is  connected, 

c m t a i z d  xo and intersects  YE f o r  each E suf f ic ien t ly  small. If 

YE intersected with some open neighborhood of xo is t o t a l l y  disconnected 

f o r  each E suf f ic ien t ly  small, then w e  m y  choose eo so that 

Y* I? YE consists of a single point f o r  each E i n  [0, E ~ ] .  D e f i n i n g  

the function on [0, e o ]  by the  formula 

, 
I 
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w e  may observe that g is continuous and obviously f o r  each E i n  

[O, Eo], 

Therefore our theorem i s  proved. 

E(€) i s  a periodic Solution fo r  equation ( 5 )  of period wE. 

W e  remark that Theorem 7 and Theorem 8 are merely suggestive of 

the types of results which a re  possible t o  obtain concerning the con- 

t inu i ty  of periodic solutions under perturbations. The very powerful 

results of Schauder and Leray on the  loca l  degree f o r  continuous dis- 

placements and the many extensions of this work of more recent or igin 

provide excellent tools  f o r  the analysis of such questions. 

c d r ,  the  theory surrounding the notion of a fixed point index is  very 

useful. The reader interested i n  such questions of continuity and 

I n  parti- 

nearness" may prof i tably refer t o  references [lo], [U], [12], 1131, f1 

D41, C U I  and [161. 

I n  conclusion l e t  us mntion another interest ing and important 

question associated with periodic behavior f o r  solutions of functional- 

d i f f e ren t i a l  equations of the type considered i n  this paper. T h i s  is; 

the establishment of &he existence of periodic solutions which are 

necessarily nontrivial  i n  the sense of not being constant functions3 W e  

remark that if one imposes a type of uniform i n s t a b i l i t y  i n  a neighbor- 

hood of i n i $ i a l  functions which yield constant solutions together with 

the hypotheses of Theorem ?,then it is possible i n  many s i tuat ions t o  

es tabl ish the existence of nontr ivial  solutions using the techniques 

employed i n  Theorem 2 of [61. 
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